ar X iv : h ep - t h / 04 11 09 0 v 1 8 N ov 2 00 4 The Bargmann - Wigner Equations in Spherical Space

نویسندگان

  • D. G. C. McKeon
  • T. N. Sherry
چکیده

1 Abstract The Bargmann-Wigner formalism is adapted to spherical surfaces embedded in three to eleven dimensions. This is demonstrated to generate wave equations in spherical space for a variety of antisymmetric tensor fields. Some of these equations are gauge invariant for particular values of parameters characterizing them. For spheres embedded in three, four and five dimensions, this gauge invariance can be generalized so as to become non-Abelian. This non-Abelian gauge invariance is shown to be a property of second order models for two index antisymmetric tensor fields in any number of dimensions. The O(3) model is quantized and the two point function shown to vanish at one loop order. The Bargmann-Wigner (BW) equations [1,2] are a means of generating wave equations for higher spin fields. For spin s, a totaly symmetric 2s component spinor ψ α 1 α 2 ...α 2s is taken to satisfy the 2s equations (iγ · ∂ + m) α,β ψ βα 2 ···α 2s = 0. .. (iγ · ∂ + m) α 2s β ψ α 1 α 2 ···β = 0. (1) (We work in Euclidean space with γ-matrix conventions given in the appendix.) Before adapting this procedure to spherical space, we will demonstrate how eq. (1) can be used in the case s = 1 to generate the Maxwell equations. By eqs. (A.15) and (A.16), we see that

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q ua nt - p h / 04 09 11 8 v 1 17 S ep 2 00 4 THE SEGAL – BARGMANN TRANSFORM FOR NONCOMPACT SYMMETRIC SPACES OF THE COMPLEX TYPE

We consider the generalized Segal–Bargmann transform, defined in terms of the heat operator, for a noncompact symmetric space of the complex type. For radial functions, we show that the Segal–Bargmann transform is a unitary map onto a certain L space of meromorphic functions. For general functions, we give an inversion formula for the Segal–Bargmann transform, involving integration against an “...

متن کامل

ar X iv : h ep - t h / 95 04 11 7 v 4 2 9 N ov 1 99 5 Sphalerons , instantons , and standing waves on S 3 ⊗

We consider pure SU (2) Yang-Mills theory when the space is compactified to a 3-dimensional sphere with finite radius. The Euclidean classical self-dual solutions of the equations of motion (the instantons) and the static finite energy solutions (the sphalerons) which have been found earlier are rewritten in handy physical variables with the gauge condition A 0 = 0. Stationary solutions to the ...

متن کامل

ar X iv : h ep - t h / 05 11 04 8 v 1 4 N ov 2 00 5 Zero - point energy in spheroidal geometries

We study the zero-point energy of a massless scalar field subject to spheroidal boundary conditions. Using the zeta-function method, the zero-point energy is evaluated for small ellipticity. Axially symmetric vector fields are also considered. The results are interpreted within the context of QCD flux tubes and the MIT bag model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004